
ДОКТОР, У МЕНЯ НОВАЯ ПЛАТФОРМА!
АНТОН КОРОБЕЙНИКОВ

Platform Support?

Calling convention(s)

TLS, DSO, Platform ABI, …

Target triples & subtargets

Frontend(s)

Backend

Backend: generic things

Always in-tree

Mainline vs downstream?

Private changes

Plan to sync with LLVM mainline

How large a typical backend is?

How large a typical backend is?

How to make a backend?

Two approaches:

Assembler / Disassembler

“Hello world”

Compilation Flow

Compiler:

C/C++ → LLVM IR → Instruction Selector → MIR → MC → .o

Assembler:

.s → MC → .o

Assembler / Disassembler

Common part in compilation flows: MC layer

Encode / decode machine instructions

Produce perfectly fine ELF

MC layer: key ingredients

Describe instruction encoding and assembly syntax

Describe registers and other instruction operands

Assembly parsing (can be skipped)

Necessary backend boilerplate

Tests

TableGen: the Great and Powerful

DSL used to describe different aspects of target (not only)

Language itself is simple, but this is not enough

Lots of tablegen “backends” that generate code out of
descriptions

Boilerplate

Directory inside lib/Target: lib/Target/Foo

Build system: CMakeLists.txt

Target registration

Triple parsing

Test infrastructure: lit + FileCheck

“Hello world” approach
Start from the small code snippets

Iteratively work over testcases covering more and more

Add instruction definitions as necessary

“Hello world” approach
Start from the small code snippets

Iteratively work over testcases covering more and more

Add instruction definitions as necessary

define void @f() {

 ret void

}

“Hello world” approach
Start from the small code snippets

Iteratively work over testcases covering more and more

Add instruction definitions as necessary

define void @f() {

 ret void

}

define i32 @double() {

 ret i32 42

}

“Hello world” approach
Start from the small code snippets

Iteratively work over testcases covering more and more

Add instruction definitions as necessary

define i32 @double(i32 %x) {

 %y = add i32 %x, %x

 ret i32 %y

}

Important choice in year 2023

Important choice in year 2023

SelectionDAG or GlobalISel?

Important choice in year 2023
SelectionDAG:

Mature

Lots of code and examples

Has its own limitations (per BB)

GlobalISel

Fresh and shiny (well, not quite)

Can work cross-BB

Might have some quirks especially for optimized code

More Decisions

Instruction scheduling?

Target-specific optimisations, peepholes

HW loops

…

Custom Changes

Try to generalize

Do it as you’d submit it to LLVM mainline tomorrow

Try to make isolated changes: hooks, passes, etc.

Do not: add hacks & kludges here and there

Where to get help?

Other backends:

Small: BPF, RISC-V, MSP430

Larger: AArch64

Generic code, parent classes

Some docs on llvm.org/docs (patches are welcome!)

Discourse

http://llvm.org/docs

Q & A

