NOKTOP, Y MEHA1 HOBAS IJIATGOPMA!



Platform Support”?

Calling convention(s)

TLS, DSO, Platform ABI, ...
Target triples & subtargets
Frontend(s)

Backend




Backend: generic things

Always in-tree
Mainline vs downstream?
Private changes

Plan to sync with LLVM mainline




How large a typical backend is??




How large a typical backend is??

Lines of Code

AArch64 ARM X86 AMDGPU BPF

50000

— 3000




Fig 1. Draw two circles Fig 2. Draw the rest of the damn Owl




WO approaches:

Assembler / Disassembler

“Hello world”




Compilation Flow

Compiler:

C/C++ — LLVM IR — Instruction Selector = MIR = MC — .o

Assembler:

B2 > .0




Assembler / Disassembler

Common part in compilation flows: MC layer
Encode / decode machine instructions

Produce perfectly fine ELF




Describe instruction encoding and assembly syntax
Describe registers and other instruction operands
Assembly parsing (can be skipped)

Necessary backend boilerplate

Tests



DSL used to describe different aspects of target (not only)
Language itself is simple, but this is not enough

Lots of tablegen “backends” that generate code out of
descriptions



Directory inside lib/Target: lib/Target/Foo
Build system: CMakelL.ists.txt

Target registration

Triple parsing

Test infrastructure: lit + FileCheck



Start from the small code snippets
lteratively work over testcases covering more and more

Add instruction definitions as necessary



“Hello world™ approach

Start from the small code snippets
lteratively work over testcases covering more and more

Add instruction definitions as necessary

@f() {




‘Hello world™ approacn

Start from the small code snippets
lteratively work over testcases covering more and more

Add instruction definitions as necessary

@f() { @double() {
42




‘Hello world™ approacn

Start from the small code snippets
lteratively work over testcases covering more and more

Add instruction definitions as necessary




Important choice In year 2023




Important choice In year 2023

SelectionDAG or GloballSel?




SelectionDAG:
Mature
L ots of code and examples

Has its own limitations (per BB)

GloballSel
Fresh and shiny (well, not quite)
Can work cross-BB

Might have some quirks especially for optimized code



\Viore Decisions

Instruction scheduling?
Target-specific optimisations, peepholes

HW loops




Try to generalize
Do it as you’d submit it to LLVM mainline tomorrow
Try to make isolated changes: hooks, passes, etc.

Do not: add hacks & kludges here and there



Other backends:
Small: BPF, RISC-V, MSP430
Larger: AArcho4

Generic code, parent classes

Some docs on llvm.org/docs (patches are welcome!)

Discourse


http://llvm.org/docs




